

# Preoperative C-reactive Protein as a Prognostic Factor in Stage IV Colorectal Cancer

Hiroka Kondo, Yasumitsu Hirano, Toshimasa Ishii, Shintaro Ishikawa, Takatsugu Fujii, Masahiro Asari, Atsuko Kataoka, Masahiro Kataoka, Satoshi Shimamura, Shigeki Yamaguchi

Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, Hidaka-shi, Japan

**Background:** A prognosis for stage IV colorectal cancer is generally poor. As a result, the development of an appropriate treatment strategy for each individual with this disease within a limited time frame is important. Few studies have been made of C-reactive protein (CRP) in stage IV cases of colorectal cancer, so it is unclear whether CRP is a useful prognostic marker for this disease. Thus, the purpose of this study was to clarify the relationship between the preoperative CRP level and the prognosis of stage IV colorectal cancer.

Patients and methods: Between April 2007 and December 2015, a total of 384 patients with stage IV colorectal cancer who underwent primary resection were included. Patients were divided into high (HCG) and low (LCG) CRP groups based on a preoperative CRP cutoff value of 1.0 mg/dL. Postoperative short- and long-term results were examined retrospectively.

**Results:** The 5-year survival rate was 24.6% for HCG and 36.7% for LCG, indicating the survival rate for HCG was lower. The study was limited to patients who were unable to undergo R0 surgery. Preoperative CEA levels were higher in HCG, whereas the postoperative chemotherapy induction rate was lower. HCG also showed a significantly lower survival rate than LCG. Multivariate analysis showed that CRP levels above 1.0 mg/dL, poorly differentiated histopathology, and the absence of chemotherapy were risk factors affecting overall survival.

**Conclusion:** These results suggest that the preoperative CRP level may be a useful biomarker for the prognosis of incurable stage IV colorectal cancer.

Key words: CRP - Colorectal cancer - Stage IV

Corresponding author: Hiroka Kondo, MD, Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama 350-1298, Japan.

Tel.: +81 42 984 4111; Fax: +81 42 984 0054; E-mail: hirokak@saitama-med.ac.jp

Treatment outcomes for stage IV colorectal cancer are generally poor. For example, in unresectable colorectal cancer, the median survival time without drug therapy is about 8 months. Recent advances in drug therapy have extended median survival time to more than 30 months, although this disease remains difficult to cure in most patients. Because of a limited time with which to act, it is extremely important to formulate an appropriate treatment strategy. However, to date, the prognostication of each patient with stage IV colorectal cancer is thought to be difficult.

A high C-reactive protein (CRP) value in a preoperative examination is suggested to be a poor prognostic factor in various malignant tumors such as gastric,<sup>5</sup> lung,<sup>6</sup> pancreatic,<sup>7,8</sup> and colon cancers.<sup>9</sup> However, most of these reports are on radically treated cases, with few reports on stage IV cases.<sup>10–14</sup> It is therefore unclear whether the CRP level can be a useful prognostic marker for stage IV colorectal cancer. In addition, stage IV colorectal cancer has a wide variety of medical conditions, including the metastatic organs involved, the number of metastases, and whether it is curable or incurable. The purpose of this study is to clarify the relationship between preoperative CRP levels and the prognosis of stage IV colorectal cancer.

### Patients and Methods

Between April 2007 and December 2015, a total of 384 patients with stage IV colorectal cancer underwent primary resection at Saitama Medical University International Medical Center. All study participants provided their informed consent. The study design was approved by the Ethics Committee of Saitama Medical University International Medical Center (no. 19-149). All patients were monitored using a standard Japanese postoperative surveillance program. Patients were divided into either a high CRP group (HCG) with preoperative CRP values of 1.0 mg/dL, or a low CRP group (LCG). Operative outcomes included surgical approach, operating time, blood loss, whether or not an R0 surgical resection was possible, and histopathologic diagnosis. We also assessed postoperative complications, and postoperative hospital stays as short-term clinical outcomes. Five-year cancerspecific and overall survival rates served as longterm oncologic outcomes. In this study, short- and long-term outcomes in HCG and LCG were compared retrospectively.

Table 1 Clinical characteristics in all patients

|                        | High CRP group      | Low CRP group     | P value |
|------------------------|---------------------|-------------------|---------|
| n                      | 107                 | 277               |         |
| Sex, n (%)             |                     |                   |         |
| Male                   | 73 (68.2)           | 172 (62.1)        |         |
| Female                 | 34 (31.8)           | 105 (37.9)        | 0.262   |
| Age, y                 | $67.27 \pm 10.18$   | $65.39 \pm 11.05$ | 0.136   |
| Double cancers,        | (%)                 |                   |         |
| Yes                    | 8 (7.5)             | 22 (7.9)          |         |
| No                     | 99 (92.5)           | 255 (92.1)        | 0.879   |
| Multiple cancers       | s, n (%)            |                   |         |
| Yes                    | 9 (8.4)             | 19 (6.9)          |         |
| No                     | 98 (91.6)           | 258 (93.1)        | 0.600   |
| ASA-PS, n (%)          |                     |                   |         |
| 1                      | 41 (38.3)           | 103 (37.5)        |         |
| 2                      | 51 (47.7)           | 147 (53.5)        |         |
| 3                      | 15 (14.0)           | 25 (9.1)          | 0.317   |
| Previous abdom         | inal surgery, n (%) |                   |         |
| Yes                    | 34 (31.8)           | 101 (36.5)        |         |
| No                     | 73 (68.2)           | 176 (63.5)        | 0.389   |
| CEA value 5.0 n        | g/mL, n (%)         |                   |         |
| ≥5.0 ng/mL             | 91 (85.0)           | 197 (71.1)        |         |
| <5.0 ng/mL             | 16 (15.0)           | 80 (28.9)         | 0.005   |
| BMI, kg/m <sup>2</sup> | $22.21 \pm 3.83$    | $22.54 \pm 3.55$  | 0.404   |

All statistical analyses were performed using the SPSS software package (SPSS version 25: IBM, Tokyo, Japan). For statistical analysis, we performed  $\chi^2$  and Mann-Whitney U tests to examine differences between the two groups. The cumulative survival rate was analyzed with Kaplan-Meier and log-rank tests. P < 0.05 was considered a statistically significant difference.

### Results

Patient backgrounds are shown in Table 1. There were 107 cases of HCG and 277 cases of LCG. HCG consisted of 73 male and 34 female patients, whereas LCG was made up of 172 males and 105 females. The average ages in each group were 67 and 65 years, respectively. There were no significant differences between HCG and LCG in terms of age, sex, the presence or absence of double or multiple cancers, preoperative American Society of Anesthesiologists physical status (ASA-PS), body mass index (BMI), and history of abdominal surgery. Only preoperative carcinoembryonic antigen (CEA) values were significantly higher in HCG. Table 2 shows short-term postoperative outcomes. A significant difference between HCG and LCG in the rate of laparoscopic surgery, operation time, blood loss, postoperative complication rate, and postoperative hospital stay was not observed. A difference in

Table 2 Short-term outcomes in all patients

|                                              | High CRP group      | Low CRP group       | P value |
|----------------------------------------------|---------------------|---------------------|---------|
| n                                            | 107                 | 277                 |         |
| Laparoscopic surgery, n (%)                  |                     |                     |         |
| Yes                                          | 62 (57.9)           | 189 (68.2)          |         |
| No                                           | 45 (42.1)           | 88 (31.8)           | 0.058   |
| Operation time, min                          | $216.11 \pm 90.24$  | $228.89 \pm 85.68$  | 0.064   |
| Blood loss, mL                               | $196.71 \pm 332.67$ | $145.70 \pm 281.87$ | 0.181   |
| Postoperative complication                   |                     |                     |         |
| Clavien-Dindo Grade ≥II, n (%)               |                     |                     |         |
| Yes                                          | 19 (17.8)           | 42 (15.2)           |         |
| No                                           | 88 (82.2)           | 235 (84.8)          | 0.533   |
| Urination disorder (self-catheterization), n | (%)                 | , ,                 |         |
| Yes                                          | 3 (2.8)             | 6 (2.2)             |         |
| No                                           | 104 (97.2)          | 271 (97.8)          | 0.711   |
| Postoperative hospital stay, days            | $11.30 \pm 9.67$    | $10.96 \pm 13.53$   | 0.732   |
| R0 surgical resection, n (%)                 |                     |                     |         |
| Yes                                          | 18 (16.8)           | 104 (37.5)          |         |
| No                                           | 89 (83.2)           | 173 (62.5)          | < 0.001 |
| Histopathology, n (%)                        | , ,                 | , ,                 |         |
| Well, moderate                               | 92 (86.0)           | 247 (89.2)          |         |
| Poor, mucinous                               | 15 (14.0)           | 30 (10.8)           | 0.384   |
| Lymphatic invasion, n (%)                    | , ,                 | , ,                 |         |
| Positive                                     | 62 (57.9)           | 159 (57.4)          |         |
| Negative                                     | 45 (42.1)           | 118 (42.6)          | 0.952   |
| Venous invasion, n (%)                       | , ,                 | , ,                 |         |
| Positive                                     | 90 (84.1)           | 244 (88.1)          |         |
| Negative                                     | 17 (15.9)           | 33 (11.9)           | 0.259   |
| Tumor depth, n (%)                           | , ,                 | ` ,                 |         |
| T1-T3                                        | 64 (59.8)           | 185 (66.8)          |         |
| T4                                           | 43 (40.2)           | 92 (33.2)           | 0.199   |
| Lymph node metastasis, n (%)                 | ,                   | ,                   |         |
| Positive                                     | 82 (76.6)           | 222 (80.1)          |         |
| Negative                                     | 25 (23.4)           | 55 (19.9)           | 0.504   |
| Peritoneal dissemination, n (%)              | , ,                 | , ,                 |         |
| Positive                                     | 26 (24.3)           | 53 (19.1)           |         |
| Negative                                     | 81 (75.7)           | 224 (80.9)          | 0.262   |

histopathologic findings between these 2 groups was also not found. However, the number of cases with an R0 surgical resection of distant metastasis was significantly smaller in HCG. Figure 1 shows a Kaplan-Meier survival curve. The 3-year survival rate was 33.9% for HCG and 49.7% for LCG, whereas the 5-year survival rate was 24.6% for HCG and 36.7% for LCG. This indicated a significantly lower survival rate for HCG (P < 0.001). Multivariate analysis of factors affecting the survival rate showed that a CRP value 1.0 (hazard ratio [HR], 0.718; 95% confidence interval [CI], 0.54–0.954; P =0.022), poor histopathologic type (HR, 0.458; 95% CI, 0.314-0.667; P < 0.001), positive venous invasion (HR, 0.602; 95% CI, 0.389–0.931; P = 0.023), and whether an R0 surgical resection was undertaken (HR, 0.19; 95% CI, 0.132–0.274; P < 0.001) were risk factors (Table 3).

In the present study, an R0 surgical resection was performed in 122 cases (31.8%). Eighteen cases (16.8%) had an R0 resection in HCG, and 104 cases (37.5%) in LCG. The proportion of R0 resections was significantly higher in LCG. The background and short-term postoperative outcomes of patients with an R0 resection are shown in Tables 4 and 5. A significant difference between HCG and LCG in background factors, including preoperative CEA value, was not noted. In terms of surgical treatment, the proportion of laparoscopic surgeries was lower in HCG. Accordingly, the amount of estimated blood loss was also larger in HCG. However, a significant difference was not noted between the 2 groups in regard to the postoperative complication rate, the length of postoperative hospital stays, and histopathologic evaluation. As for long-term survival, there was no significant difference in overall

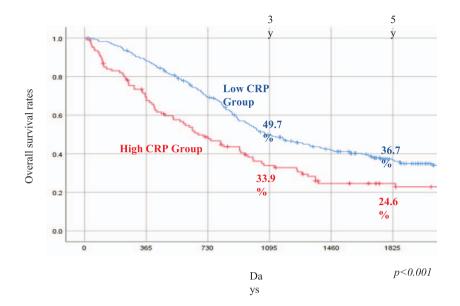



Fig. 1 Kaplan-Meier survival curve

survival between the 2 groups in patients with an R0 resection (Fig. 2).

We also examined only those patients who underwent palliative surgery. A total of 262 patients were unable to undergo R0 surgical resection in this series. Similar to the results of the overall stage IV study, many cases existed in HCG that showed a high CEA level within the patient background. Differences did not exist concerning age, sex, ASA-PS, BMI, and other variables listed in Table 6. In postoperative short-term results, as shown in Table 7, postoperative chemotherapy was introduced to 67.4% of patients in HCG and 83.8% of patients in LCG (P = 0.002). Comparing overall survival rates, HCG had significantly lower survival rates than LCG (Fig. 3). Multivariate analysis

Table 3 Multivariate analysis of factors affecting survival rates

|                                  | HR    | 95.0% CI      | P value |
|----------------------------------|-------|---------------|---------|
| Sex                              | 0.938 | 0.71-1.24     | 0.653   |
| Age                              | 1.009 | 0.996 - 1.022 | 0.195   |
| Double cancers                   | 0.96  | 0.591 - 1.56  | 0.868   |
| Multiple cancers                 | 1.121 | 0.685 - 1.833 | 0.650   |
| Clavien-Dindo Grade II or higher | 1.075 | 0.758 - 1.525 | 0.684   |
| CEA ≥5.0 ng/mL                   | 0.828 | 0.607 - 1.13  | 0.234   |
| CRP ≥1.0 mg/dL                   | 0.718 | 0.54 - 0.954  | 0.022   |
| Histologic type                  | 0.458 | 0.314-0.667   | < 0.001 |
| Lymphatic invasion               | 0.818 | 0.62 - 1.081  | 0.158   |
| Vein invasion                    | 0.602 | 0.389-0.931   | 0.023   |
| Tumor depth                      | 0.804 | 0.609 - 1.061 | 0.124   |
| Lymph node metastasis            | 1.003 | 0.701 - 1.436 | 0.986   |
| With peritoneal dissemination    | 0.817 | 0.592 - 1.128 | 0.219   |
| R0 surgical resection            | 0.19  | 0.132-0.274   | < 0.001 |

showed that CRP values above 1.0 mg/dL, poorly differentiated histopathology, and the absence of chemotherapy were risk factors affecting overall survival (Table 8).

### Discussion

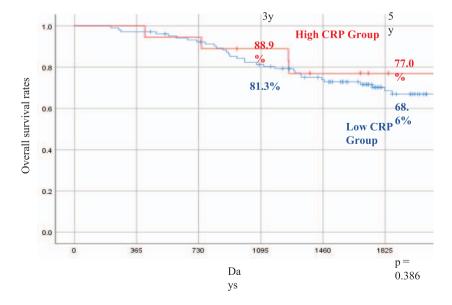

CRP is an acute-phase protein that is synthesized and secreted by the liver and is recognized as part of the inflammatory response.<sup>15</sup> CRP is useful for

Table 4 Clinical characteristics in patients with R0 surgical resection

|                        | High CRP group      | Low CRP group     | P value |
|------------------------|---------------------|-------------------|---------|
| n                      | 18                  | 104               |         |
| Sex, n (%)             |                     |                   |         |
| Male                   | 12 (66.7)           | 58 (55.8)         |         |
| Female                 | 6 (33.3)            | 46 (44.2)         | 0.388   |
| Age, y                 | $63.22 \pm 9.45$    | $64.71 \pm 10.66$ | 0.400   |
| Double cancers,        | n (%)               |                   |         |
| Yes                    | 1 (5.6)             | 7 (6.7)           |         |
| No                     | 17 (94.4)           | 97 (93.3)         | 0.665   |
| Multiple cancers       | s, n (%)            |                   |         |
| Yes                    | 1 (5.6)             | 7 (6.7)           |         |
| No                     | 17 (94.4)           | 97 (93.3)         | 0.665   |
| ASA-PS, n (%)          |                     |                   |         |
| 1                      | 9 (50.0)            | 39 (37.5)         |         |
| 2                      | 6 (33.3)            | 57 (54.8)         |         |
| 3                      | 3 (16.7)            | 8 (7.7)           | 0.187   |
| Previous abdom         | inal surgery, n (%) |                   |         |
| Yes                    | 6 (33.3)            | 41 (39.4)         |         |
| No                     | 12 (66.7)           | 63 (60.6)         | 0.624   |
| CEA value 5.0 n        | g/mL, n (%)         |                   |         |
| ≥5.0 ng/mL             | 14 (77.8)           | 66 (63.5)         |         |
| <5.0 ng/mL             | 4 (22.2)            | 38 (36.5)         | 0.238   |
| BMI, kg/m <sup>2</sup> | $21.41 \pm 3.43$    | $22.49 \pm 3.29$  | 0.297   |

Table 5 Short-term outcomes in patients with R0 surgical resection

|                                                 | High CRP group      | Low CRP group       | P value |
|-------------------------------------------------|---------------------|---------------------|---------|
| n                                               | 18                  | 104                 |         |
| Laparoscopic surgery, n (%)                     |                     |                     |         |
| Yes                                             | 7 (38.9)            | 67 (64.4)           |         |
| No                                              | 11 (61.1)           | 37 (35.6)           | 0.041   |
| Operation time, min                             | $251.28 \pm 124.55$ | $228.74 \pm 97.67$  | 0.593   |
| Blood loss, mL                                  | $357.78 \pm 441.31$ | $193.64 \pm 358.31$ | 0.032   |
| Postoperative complication                      |                     |                     |         |
| Clavien-Dindo Grade >II, n (%)                  |                     |                     |         |
| Yes                                             | 2 (11.1)            | 13 (12.5)           |         |
| No                                              | 16 (88.9)           | 91 (87.5)           | 0.614   |
| Urination disorder (self-catheterization), n (% | )                   | ` ,                 |         |
| Yes                                             | 0 (0.0)             | 2 (1.9)             |         |
| No                                              | 18 (100.0)          | 102 (98.1)          | 0.726   |
| Postoperative hospital stay, days               | $10.33 \pm 5.27$    | $9.93 \pm 6.47$     | 0.575   |
| Histopathology, n (%)                           |                     |                     |         |
| Well, moderate                                  | 15 (83.3)           | 96 (92.3)           |         |
| Poor, mucinous                                  | 3 (16.7)            | 8 (7.7)             | 0.207   |
| Lymphatic invasion, n (%)                       | , ,                 | . ,                 |         |
| Positive                                        | 13 (72.2)           | 54 (51.9)           |         |
| Negative                                        | 5 (27.8)            | 50 (48.1)           | 0.119   |
| Venous invasion, n (%)                          | , ,                 | ` ,                 |         |
| Positive                                        | 15 (83.3)           | 85 (81.7)           |         |
| Negative                                        | 3 (16.7)            | 19 (18.3)           | 0.619   |
| Tumor depth, n (%)                              | , ,                 | ` ,                 |         |
| T1-3                                            | 11 (61.1)           | 74 (71.2)           |         |
| T4                                              | 7 (38.9)            | 30 (28.8)           | 0.392   |
| Lymph node metastasis, n (%)                    | , ,                 | • •                 |         |
| Positive                                        | 13 (72.2)           | 77 (74.0)           |         |
| Negative                                        | 5 (27.8)            | 27 (26.0)           | 0.512   |
| Peritoneal dissemination, n (%)                 | ,                   | ` '                 |         |
| Positive                                        | 2 (11.1)            | 16 (15.4)           |         |
| Negative                                        | 16 (88.9)           | 88 (84.6)           | 0.481   |



**Fig. 2** Kaplan-Meier survival curve in patients with R0 surgical resection

Table 6 Clinical characteristics in patients without R0 surgical resection

|                        | High CRP group      | Low CRP group     | P value |
|------------------------|---------------------|-------------------|---------|
| n                      | 89                  | 173               |         |
| Sex, n (%)             |                     |                   |         |
| Male                   | 61 (68.5)           | 114 (65.9)        |         |
| Female                 | 28 (31.5)           | 59 (34.1)         | 0.667   |
| Age, y                 | $68.09 \pm 10.17$   | $65.80 \pm 11.29$ | 0.105   |
| Double cancers,        | n (%)               |                   |         |
| Yes                    | 7 (7.9)             | 15 (8.7)          |         |
| No                     | 82 (92.1)           | 158 (91.3)        | 0.824   |
| Multiple cancers       | s, n (%)            |                   |         |
| Yes                    | 8 (9.0)             | 12 (6.9)          |         |
| No                     | 81 (91.0)           | 161 (93.1)        | 0.554   |
| ASA-PS, n (%)          |                     |                   |         |
| 1                      | 32 (36.0)           | 64 (37.4)         |         |
| 2                      | 45 (50.6)           | 90 (52.6)         |         |
| 3                      | 12 (13.5)           | 17 (9.9)          | 0.690   |
| Previous abdom         | inal surgery, n (%) |                   |         |
| Yes                    | 28 (31.5)           | 60 (34.7)         |         |
| No                     | 61 (68.5)           | 113 (65.3)        | 0.601   |
| CEA value 5.0 n        | g/mL, n (%)         |                   |         |
| ≥5.0 ng/mL             | 77 (86.5)           | 131 (75.7)        |         |
| <5.0 ng/mL             |                     | 42 (24.3)         | 0.041   |
| BMI, kg/m <sup>2</sup> | $22.37 \pm 3.91$    | $22.58 \pm 3.71$  | 0.685   |

ASA-PS, American Society of Anesthesiologists physical status; CEA, Carcinoembryonic antigen; BMI, Body mass index; CRP, Creactive protein.

predicting complications after the intestinal resection of malignant tumors and in the prognosis of patients who have undergone surgical resection of malignant tumors.<sup>7–9,16–19</sup> Increased CRP is observed in many conditions such as infection,

inflammation, malignant tumors, and trauma; previous studies have suggested a link between inflammation and cancer. In addition to CRP, other indicators of inflammation include the Glasgow prognostic score, calculated from CRP and albumin, the neutrophil-to-lymphocyte ratio, interleukin-6, matrix metalloproteinase-9, and other variables; their relationship with the degree of malignant tumor progression and prognosis has been described. Other studies have demonstrated that the CEA value correlates with the prognosis of colorectal cancer.<sup>22,23</sup> In the present study, patients in HCG with palliative surgery showed a significantly high CEA. However, HCG patients who underwent an R0 surgical resection did not show a significantly high CEA, and CEA was not found to be a prognostic factor in our study.

In short-term outcomes, univariate analysis revealed that a small number of people could perform an R0 surgical resection with HCG. In stage IV colorectal cancer, the ability to perform R0 surgery is also a prognostic factor. He we cases exist in which an R0 surgical resection is possible in HCG, resulting in a poor prognosis. In addition to the high CRP value in multivariate analysis, the inability to perform an R0 surgical resection was also a factor that reduced the survival rate.

In this study, HCG patients with palliative surgery showed a significantly lower chemotherapy induction rate. Prechemotherapy CRP levels help predict prognosis in patients with colorectal cancer receiving oxaliplatin-based chemotherapy.



**Fig. 3** Kaplan—survival curve in patients without R0 surgical resection

Table 7 Short-term outcomes in patients without R0 surgical resection

|                                                 | High CRP            | Low CRP             |         |
|-------------------------------------------------|---------------------|---------------------|---------|
|                                                 | group               | group               | P value |
| n                                               | 89                  | 173                 |         |
| Laparoscopic surgery, n (%)                     |                     |                     |         |
| Yes                                             | 55 (61.8)           | 122 (70.5)          |         |
| No                                              | 34 (38.2)           | 51 (29.5)           | 0.153   |
| Operation time, min                             | $209.00 \pm 80.67$  | $228.98 \pm 77.74$  | 0.017   |
| Blood loss, mL                                  | $164.13 \pm 298.83$ | $116.88 \pm 219.96$ | 0.454   |
| Postoperative complication                      |                     |                     |         |
| Clavien-Dindo Grade ≥II, n (%)                  |                     |                     |         |
| Yes                                             | 17 (19.1)           | 29 (16.8)           |         |
| No                                              | 72 (80.9)           | 144 (83.2)          | 0.638   |
| Urination disorder (self-catheterization), n (% | (6)                 | , ,                 |         |
| Yes                                             | 3 (3.4)             | 4 (2.3)             |         |
| No                                              | 86 (96.6)           | 169 (97.7)          | 0.444   |
| Postoperative hospital stay, days               | $11.49 \pm 10.35$   | $11.57 \pm 16.36$   | 0.939   |
| Histopathology, n (%)                           |                     |                     |         |
| Well, moderate                                  | 77 (86.5)           | 151 (87.3)          |         |
| Poor, mucinous                                  | 12 (13.5)           | 22 (12.7)           | 0.861   |
| Lymphatic invasion, n (%)                       | , ,                 | , ,                 |         |
| Positive                                        | 49 (55.1)           | 105 (60.7)          |         |
| Negative                                        | 40 (44.9)           | 68 (39.3)           | 0.380   |
| Venous invasion, n (%)                          |                     |                     |         |
| Positive                                        | 75 (84.3)           | 159 (91.9)          |         |
| Negative                                        | 14 (15.7)           | 14 (8.1)            | 0.058   |
| Tumor depth, n (%)                              |                     |                     |         |
| T1-T3                                           | 53 (59.6)           | 111 (64.2)          |         |
| T4                                              | 36 (40.4)           | 62 (35.8)           | 0.465   |
| Lymph node metastasis, n (%)                    |                     |                     | 0.283   |
| Positive                                        | 69 (78.4)           | 145 (83.8)          |         |
| Negative                                        | 20 (22.5)           | 28 (16.2)           | 0.283   |
| Peritoneal dissemination, n (%)                 | , ,                 | • •                 |         |
| Positive                                        | 24 (27.0)           | 37 (21.4)           |         |
| Negative                                        | 65 (73.0)           | 136 (78.6)          | 0.312   |
| Chemotherapy, n (%)                             | • •                 | , ,                 |         |
| Yes                                             | 60 (67.4)           | 145 (83.8)          |         |
| No                                              | 29 (32.6)           | 28 (16.2)           | 0.002   |

Table 8 Multivariate analysis of factors affecting survival rate in patients without R0 surgical resection

|                          | HR    | 95.0% CI      | P value |
|--------------------------|-------|---------------|---------|
| Sex                      | 1.122 | 0.827-1.521   | 0.459   |
| Age                      | 1.004 | 0.990 - 1.017 | 0.604   |
| Double cancers           | 1.158 | 0.670 - 2.002 | 0.599   |
| Multiple cancers         | 1.552 | 0.884 - 2.726 | 0.126   |
| Clavien-Dindo Grade ≥II  | 1.025 | 0.704 - 1.494 | 0.896   |
| CEA value ≥5.0 ng/mL     | 0.777 | 0.544 - 1.110 | 0.166   |
| CRP ≥1.0 mg/dL           | 0.724 | 0.531 - 0.986 | 0.041   |
| Histologic type          | 0.500 | 0.327 - 0.764 | 0.001   |
| Lymphatic invasion       | 0.912 | 0.673 - 1.236 | 0.553   |
| Venous invasion          | 0.703 | 0.422 - 1.171 | 0.176   |
| Tumor depth              | 0.846 | 0.623 - 1.149 | 0.285   |
| Lymph node metastasis    | 0.717 | 0.472 - 1.089 | 0.118   |
| Peritoneal dissemination | 0.792 | 0.554 - 1.133 | 0.202   |
| Chemotherapy             | 3.685 | 2.517-5.396   | < 0.001 |

Chemotherapy is the most important treatment for unresectable colorectal cancer, suggesting that the low induction rate of chemotherapy in HCG may contribute to the decrease in survival rate observed.

Our results indicate that preoperative CRP levels were not useful for a subsequent prognosis in patients with an R0 surgical resection. Therefore, it is important to aim for an R0 surgical resection, regardless of the CRP level, if possible. If curative surgical resection cannot be performed in patients with high preoperative CRP levels and a poor prognosis, it is important to consider treatment strategies. CRP levels before treatment may be a useful biomarker for prudent decision-making if difficulty exists in performing an R0 surgical resection in patients with stage IV colorectal cancer.

### Conclusion

These results suggest that the preoperative CRP level may be a useful biomarker for the prognosis of incurable stage IV colorectal cancer.

# Acknowledgments

The authors thank the experts at BioMed Proofreading for English copy editing.

## References

- Simmonds PC. Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis: Colorectal Cancer Collaborative Group. BMJ 2000;321(7260):531–5
- Yamada Y, Takahari D, Matsumoto H, Baba H, Nakamura M, Yoshida K et al. Leucovorin, fluorouracil, and oxaliplatin plus bevacizumab versus S-1 and oxaliplatin plus bevacizumab in patients with metastatic colorectal cancer (SOFT): an openlabel, non-inferiority, randomised phase 3 trial. *Lancet Oncol* 2013;14(13):1278–1286
- Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2014;371(17):1609–1618
- Yamazaki K, Nagase M, Tamagawa H, Ueda S, Tamura T, Murata K et al. Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol. 2016;27(8):1539–1546
- Saito H, Kono Y, Murakami Y, Shishido Y, Kuroda H, Matsunaga T et al. Prognostic significance of the preoperative ratio of C-reactive protein to albumin and neutrophillymphocyte ratio in gastric cancer patients. World J Surg 2018;42(6):1819–1825
- Okada S, Shimomura M, Tsunezuka H, Teramukai S, Ishihara S, Shimada J et al. Prognostic Significance of perioperative Creactive protein in resected non-small cell lung cancer [published online ahead of print May 22, 2020]. Semin Thorac Cardiovasc Surg. 2020.
- Kim NH, Kim HJ. Preoperative risk factors for early recurrence in patients with resectable pancreatic ductal adenocarcinoma after curative intent surgical resection. Hepatobiliary Pancreat Dis Int. 2018;17(5):450–455
- 8. Haruki K, Shiba H, Shirai Y, Horiuchi T, Iwase R, Fujiwara Y *et al*. The C-reactive protein to albumin ratio predicts long-term outcomes in patients with pancreatic cancer after pancreatic resection. *World J Surg* 2016;**40**(9):2254–2260
- 9. McMillan DC, Wotherspoon HA, Fearon KC, Sturgeon C, Cooke TG, McArdle CS. A prospective study of tumor

- recurrence and the acute-phase response after apparently curative colorectal cancer surgery. *Am J Surg* 1995;**170**(4):319–322
- 10. Zacharakis M, Xynos ID, Lazaris A, Smaro T, Kosmas C, Dokou A *et al.* Predictors of survival in stage IV metastatic colorectal cancer. *Anticancer Res* 2010;30(2):653–660
- Xynos ID, Kavantzas N, Tsaousi S, Zacharakis M, Agrogiannis G, Kosmas C et al. Factors influencing survival in stage IV colorectal cancer: the influence of DNA ploidy. ISRN Gastroenterol 2013;2013:490578
- Shibutani M, Maeda K, Nagahara H, Noda E, Ohtani H, Nishiguchi Y et al. Prognostic significance of the preoperative serum C-reactive protein level in patients with stage IV colorectal cancer. Surg Today 2015;45(3):315–321
- 13. Li C, Xu Q, Chen L, Luo C, Ying J, Liu J. C-reactive protein (CRP) as a prognostic factor for colorectal cancer after surgical resection of pulmonary metastases. *Bull Cancer* 2017;104(3): 232–236
- 14. Fukuchi M, Kuwabara K, Tsuji Y, Baba H, Ishibashi K, Chika N *et al.* C-reactive protein is a negative independent factor in patients with stage IV colorectal cancer undergoing oxaliplatin-based chemotherapy. *Anticancer Res* 2013;**33**(11):5051–5055
- 15. Selby J, Prabhudesai A. Can C-reactive protein predict the severity of a post-operative complication after elective resection of colorectal cancer? *Int J Colorectal Dis* 2014;**29**(10): 1211–1215
- Ishizuka M, Nagata H, Takagi K, Iwasaki Y, Shibuya N, Kubota K. Clinical significance of the C-reactive protein to albumin ratio for survival after surgery for colorectal cancer. *Ann Surg Oncol* 2016;23(3):900–907
- 17. Matsumoto Y, Kosuga T, Konishi T, Kudou M, Shoda K, Arita T *et al.* Prognostic value of preoperative serum C-reactive protein level in gastric cancer [in Japanese]. *Gan To Kagaku Ryoho* 2019;**46**(10):1623–1625
- Takasu C, Shimada M, Kurita N, Iwata T, Nishioka M, Morimoto S et al. Impact of C-reactive protein on prognosis of patients with colorectal carcinoma. Hepatogastroenterology 2013;60(123):507–511
- Kersten C, Louhimo J, Algars A, Lahdesmaki A, Cvancerova M, Stenstedt K et al. Increased C-reactive protein implies a poorer stage-specific prognosis in colon cancer. Acta Oncol 2013;52(8):1691–1698
- 20. Rasic I, Rebic V, Rasic A, Aksamija G, Radovic S. The association of simultaneous increase in interleukin-6, C reactive protein, and matrix metalloproteinase-9 serum levels with increasing stages of colorectal cancer. *J Oncol* 2018;2018: 2830503
- Kubo H, Murayama Y, Arita T, Kuriu Y, Nakanishi M, Otsuji E. The prognostic value of preoperative neutrophil-to-lymphocyte ratio in colorectal cancer. World J Surg 2016;40(11):2796–2802
- 22. Duffy MJ, van Dalen A, Haglund C, Hansson L, Klapdor R, Lamerz R *et al.* Clinical utility of biochemical markers in

- colorectal cancer: European Group on Tumour Markers (EGTM) guidelines. *Eur J Cancer* 2003;39(6):718–727
- 23. Huang SC, Lin JK, Lin TC, Chen WS, Yang SH, Wang HS *et al.* Concordance of carcinoembryonic antigen ratio and response evaluation criteria in solid tumors as prognostic surrogate
- indicators of metastatic colorectal cancer patients treated with chemotherapy. *Ann Surg Oncol* 2015;**22**(7):2262–2268
- 24. Hotokezaka M, Jimi S, Hidaka H, Ikeda T, Uchiyama S, Nakashima S *et al.* Factors influencing outcome after surgery for stage IV colorectal cancer. *Surg Today* 2008;**38**(9):784–789