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Mouse unilateral ureteral occlusion (UUO) is widely used as a model of renal

experimental obstructive nephropathy with interstitial fibrosis. Microcomputed tomog-

raphy (micro-CT) imaging has the potential to produce quantitative images. The aim of

this study was to establish standard images of micro-CT for renal anatomic and

functional evaluations in a mouse model of UUO. UUO was induced in adult male mice

BALB/c. In total, 27 mice were used in this study. Three mice per group (a total of 6

groups) were examined with contrast-enhanced micro-CT prior to UUO (day 0) and on

days 1, 3, 5, 7, 10, and 14 after UUO. In order to determine the histopathologic correlations

at each point in time, contrast-enhanced micro-CT imaging was performed in the 18

remaining mice. All animals were sacrificed, and both kidneys were harvested after the

final micro-CT examination. UUO resulted in hydronephrosis and changes in the renal

parenchyma. The predominant alteration was substantial changes in the hemodynamics

of the renal vascular system after ureteral obstruction for 24 hours or longer, which may

be resulting from increased action of vasoconstrictors versus vasodilators. The renal

parenchyma was significantly reduced after 1 week, and the features of the histologic

changes supported the findings of the micro-CT images. In the contralateral unobstructed

kidneys, the images showed a normal structure and function and the pathohistology
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revealed a normal histoarchitecture. Micro-CT is a useful tool for providing noninvasive

monitoring and evaluating the renal structure and function.

Key words: Noninvasive monitoring – Unilateral ureteral occlusion – Microcomputed
tomography

In renal disease, a number of diseases involve
structural changes and functional abnormalities.

Most forms of chronic kidney disease tend to result in
progressive loss of the renal function due to the effects
of glomerular sclerosis and or interstitial fibrosis.
Approximately 80% of the total kidney volume is
composed of tubular epithelial cells and cells within
the interstitial space. Unilateral ureteric obstruction
(UUO) is a widely used model of experimental renal
hydronephrosis, inflammation, and fibrosis.1 Howev-
er, simultaneous studies of structural changes and
functional abnormalities require proper methods.

X-ray computed tomography (CT), which exhibits
proven diagnostic performance in the clinical setting,
was recently redeveloped as an experimental tool for
obtaining long-term morphologic observations in rats
and mice, with the ability to rapidly acquire high-
quality images. Micro-CT is already an established
technology for imaging diverse mineralized animal
tissues and, with enhancement contrast, provides
sufficient intra-organ contrast to detect soft organs.2

The research goal of this study was to evaluate
the efficacy of the micro-CT technique for detecting
and monitoring the renal structure and function in a
murine UUO model.

Materials and Methods

Animals

Male BALB/c mice weighing 20 to 25 g were
purchased from Shizuoka Laboratory Animal Center
(Shizuoka, Japan). The mice were housed at 5 animals
or fewer per cage in a limited access area, with a room
temperature of 20 6 18C and humidity of 50 6 10%
and access to food and tap water, in accordance with
the guidelines of the Animal Use and Care Committee
of the National Research Institute for Child Health
and Development, Tokyo, Japan. All animal experi-
ments were approved by this committee and per-
formed according to its recommendations.

UUO procedure

UUO was performed as previously described.3

Briefly, using a temperature-controlled operating
table heated to body temperature, with the animal

anesthetized with isoflurane/oxygen, and a high-
quality binocular microscope to visualize the oper-
ating field, the right ureter was exposed and
permanently ligated twice with 7–0 silk sutures.
According to the study protocol, 3 mice were
examined with contrast-enhanced micro-CT prior
to UUO (day 0) and on days 1, 3, 5, 7, 10, and 14
after UUO. In order to determine the histopatho-
logic correlations at each point in time, contrast-
enhanced micro-CT imaging was performed in the
18 remaining mice. All animals were sacrificed, and
both kidneys were harvested after the final micro-
CT examination.

Micro-CT procedures

The micro-CT device (LCT-200 scanner) was pro-
vided by Hitachi Aloka Medical, Ltd (Tokyo, Japan).
The micro-CT imaging system included an imaging
scanner and controlling computer. All images were
reconstructed using the software program provided
by Hitachi Aloka Medical, Ltd. The mice were
anesthetized with isoflurane/oxygen general anes-
thesia, and 0.5 mL of radiopaque contrast agent was
injected through the tail vein. Image acquisition was
started 5 and 30 minutes after contrast agent
injection (Fig. 1A–D).

Image and quantitative analysis

In all 21 mice, the renal length and thickness and
parenchymal thickness were measured manually
using the CTAN software package (SkyScan, Aart-
selaar, Belgium) (Fig. 1E and F). The renal engorge-
ment/excretion time was measured after contrast
agent injection corresponding to a 3-dimensional
model of the kidneys (Fig. 1E’ and F’).

Histopathology and light microscopy

After the micro-CT examinations, the kidneys were
removed and fixed in buffered 10% formalin, embed-
ded in paraffin wax, and sectioned into 5-lm-thick
coronal slices, as described elsewhere.4 A coronal slice
was selected at the middle level on the anterior-
posterior axis, which corresponded to the CT imaging
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slab, and the sections were subsequently stained with
hematoxylin-eosin, as previously described.5

Statistical analysis

All values are reported as the mean 6 SD. The
statistical analyses were performed using Student’s
t-test, and the results were considered to be
statistically significant at a P value of , 0.05.

Results

Anatomical findings

As shown in Fig. 2, the images revealed structural
changes in the kidney tissue after UUO. The
absolute renal coronal length, parenchymal thick-
ness and axial renal thickness were measured in all
kidneys. The renal parenchymal thickness was
found to be severely reduced 1 week after UUO.
Two weeks later, the renal parenchyma remained a
thin wall, with no function (Fig. 2A). The renal
coronal parenchymal thickness was found to de-
crease over time on the UUO side, whereas there
were no marked changes on the contralateral side.
Significant differences were observed in the changes

in the renal parenchymal thickness between the 2
sides on days 7 (P , 0.05) and 14 (P , 0.01). The
mean thickness of the renal parenchyma on the
UUO side rapidly decreased after UUO, from 6.3 6

1.1 cm on day 0 to 2.5 6 1.1 cm on day 7. However,
no marked changes were observed in the renal
coronal length or axial thickness (Fig. 2B).

Functional results

The contrast-enhanced micro-CT images displayed
a normal structure and function of the kidneys
prior to UUO (Fig. 3). The length and thickness of
the right and left kidney were similar with no
significant differences. After 30 minutes, the con-
trast agent was excreted from the kidneys. Figure 3
shows the findings obtained 1 day after UUO, at
which time the contralateral unobstructed kidney
(CUK) exhibited a normal structure and function,
whereas UUO resulted in hydronephrosis, although
there were no changes in the length or thickness of
the renal parenchyma. Renal engorgement was
initially delayed, after which the contrast agent
was slowly evacuated after 30 minutes. In contrast,
the histoarchitecture showed no visible pathologic

Fig. 1 Imaging of the mouse kidney. Image acquisition was started 5 (A) and 30 (B) minutes after radiopaque contrast agent injection.

(C) A coronal slice shows the renal length (a) and parenchymal thickness (b, c, d). (D) An axial slice shows the renal thickness in a

BALB/c mouse. (E and F) In vivo coronal images of male BALB/c mice using contrast agent and (E’ and F’) 3-dimensional models of the

kidneys and bone. The images were acquired at 5 (E and E’) and 30 (F and F’) minutes after injection of the contrast agent.
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changes (Fig. 4). However, 1 week later, the UUO
side demonstrated severe hydronephrosis, with
thinner parenchyma, than the contralateral side.
Although the contrast agent had accumulated in the
tissue, the right kidney continued to display a
reduced function. After 2 weeks, the UUO side
displayed extremely severe hydronephrosis, where-
as the parietes of the renal parenchyma remained
intact. The right kidney exhibited no engorgement
or excretion (Fig. 3).

Histological results

Hematoxylin-eosin staining revealed progressive
tubular injury on the UUO side (Fig. 4). One day
after UUO, there were no visible pathologic chang-
es. In contrast, abnormal changes, such as morpho-

logic changes manifested by proximal tubule
dilation, tubular atrophy, and extracellular matrix
(ECM) accumulation, were evident on day 7. After 2
weeks, light micrographs of the kidney cortex
showed tubular atrophy, tubules with collapsed
and dilated lumina, and increased interstitial spaces
with mononuclear and interstitial cells.

Discussion

The current study describes an approach that enables
simultaneous anatomic and functional information as
well as rigorous histopathologic correlations to be
obtained using contrast-enhanced micro-CT as a
single diagnostic test in a mouse model of UUO.

Animal models of UUO have been refined to
elucidate the pathogenesis of obstructive nephrop-

Fig. 2 Structural changes in the kidney after UUO. (A) Changes in the renal parenchymal thickness after UUO. The images showed

that the renal parenchymal thickness was severely reduced 1 week after UUO. Two weeks later, the renal parenchyma remained a thin

wall, with no function. (B) The graph illustrates the changes in the renal coronal length, parenchymal thickness, and axial renal

thickness. The renal coronal parenchymal thickness was found to decrease over time on the UUO side, whereas it remained consistent

on the contralateral side. In contrast, the renal coronal length and axial thickness demonstrated no changes.
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Fig. 3 Images of the structure and function of the kidneys before and on days 1, 7, and 14 after UUO. Before UUO, the renal length and

thickness of the right and left kidneys were same. After 30 minutes, the contrast agent was excreted from the kidneys. One day after

UUO, the contralateral unobstructed kidney displayed a normal structure and function. The UUO induced hydronephrosis, although

the length and thickness of the renal parenchyma did not change. Renal engorgement was initially delayed, after which the contrast

agent was slowly evacuated after 30 minutes. Seven days later, the UUO had induced severe hydronephrosis, and the parenchyma was

thinner than normal. Although the contrast agent had accumulated in the tissue, the kidney continued to display a reduced function.

After 14 days, the UUO side demonstrated extremely severe hydronephrosis, although and the parietes of the renal parenchyma

remained intact. The right kidney exhibited no engorgement or excretion.

Fig. 4 Morphologic changes in the renal cortex before and on days 1, 7, and 14 after UUO. Before UUO, the renal displayed a normal

structure, with a histoarchitecture with a distinct cortex, medulla, and renal papilla. One day after UUO, there were no visible

pathologic changes. However, the day 7 sample exhibited morphologic changes manifested by proximal tubule dilation (*), tubular

atrophy (arrows) and extracellular matrix (ECM) accumulation (*). After 14 days, the kidney no longer had a normal structure, with

collapsed tubules and increased interstitial spaces containing mononuclear and interstitial cells (**). Scale bars represent 200 lm.
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athy as well as mechanisms responsible for progres-
sive renal fibrosis.6 There are many quantifiable
pathophysiologic features of the UUO model that
occur within 1 week of the onset of ureteral ligation
that make this an increasingly good experimental
model for study. Most reported evidence suggests
that the rodent model of UUO is reflective of the
human renal disease process.7

In the clinical setting, the major modalities for
evaluating the mechanisms of obstructive uropathy
include ultrasonography, nuclear scintigraphy, and
CT. Computed tomography can be used to assess
the urinary system for different purposes, and the
most important advantage of CT is that it can be
employed to visualize the entire urinary system
simultaneously. This modality also provides accu-
rate information regarding the detailed anatomy
and vasculature of the kidneys.8 Micro-CT was
developed as an experimental tool for imaging
diverse mineralized animal tissues, and the en-
hancement provided by the contrast agent yields
sufficient intra-organ contrast to detect soft organs.2

In the current study, we initially performed
contrast-enhanced micro-CT to acquire detailed
anatomic and morphologic data in a mouse model
of UUO. Using noninvasive imaging, we were able
to follow renal lesions using micro-CT for 2 weeks
and successfully established the morphology and
function of the kidneys. With respect to serial
imaging, micro-CT has the advantages of not
requiring that the animals be sacrificed and provid-
ing data for the entire urinary tract simultaneously.

A few previous studies have assessed the kidney
anatomy and function in mice.9 In addition, Almaj-
dub et al10 regards mouse kidney phenotyping is as
being an important issue, and in vivo imaging allows
for longitudinal studies. Therefore, micro-CT ap-
pears to be a suitable method for phenotyping the
kidney anatomy. The above authors also demon-
strate the accuracy of in vivo micro-CT in quantify-
ing the kidney volume and distinguishing anatomic
differences between mouse strains. Similar findings
have been reported in large animals.11

Renal pelvis dilatation may be caused by various
disorders. Congenital urinary tract obstruction is the
most important identifiable cause of renal failure in
infants and children,12 and the measurements of the
renal length and parenchymal thickness are clinically
relevant for assessing the renal function. Obtaining an
accurate kidney size is of value for monitoring the
disease progress. In the current study, the histologic
results supported the imaging results.

In the clinical setting, Mohamed et al used
contrast-enhanced spiral CT to determine the
glomerular filtration rate (GFR) in patients with
chronic obstructive uropathy.13 However, we con-
sider it appropriate to estimate the renal function by
measuring the renal length or parenchymal thick-
ness and engorgement/excretion time, as the GFR
may be falsely high if the measurement depends
only on calculating the level of total enhancement.

Other previous studies have shown that high
spatial resolution 3-dimensional anatomic and func-
tional mouse kidney images may be obtained without
contrast agent on high-field MRI.9,14 Another study
compared the efficacy of contrast-enhanced micro-CT
and MRI in animal models. The authors concluded
that, in addition to the advantages of not exposing the
animal to ionizing radiation, MRI provides a more
complete assessment.15 In contrast, micro-CT imaging
can be performed easily and also allows for functional
studies, while also being readily implemented in
animal facilities.

In previously reported studies, the renal length
and volume were measured to evaluate the presence
or severity of renal insufficiency, in which the
degree of kidney atrophy paralleled the extent of
deterioration of the renal function.16,17 In the present
study, the renal coronal length and axial thickness
on the UUO side did not change markedly during
the UUO period, while the renal coronal parenchy-
mal thickness was found to decrease over time on
the UUO side after 7 days. This observation
indicates that the hydronephrosis induced atrophic
reduction of the amount of kidney tissue.

Complete UUO involves a rapid sequence of
changes within 24 hours, leading to hydronephrosis
and reduced glomerular filtration.6 Progression to
severely hydronephrotic kidneys with noticeable
loss of the renal parenchyma occurs after just 1
week, as demonstrated above. However, clinically
obstructive nephropathy involves partial obstruction
and recanalization, rather than complete obstruction,
and various models of partial UUO and ureteral
obstruction reversal have been developed.18–20 We
are planning to perform further experiments to
evaluate the characteristics of partial UUO and
potential for reversal of ureteral obstruction.

One limitation of the present study is that there
was no evidence of findings specific for renal fibrosis.
However, the use of a combination of other noninva-
sive tests, such as diffusion-weighted imaging,21 is
expected to enable the clinician to identify renal
fibrosis.
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In conclusion, the present study demonstrated
that microcomputed tomography is a useful tool for
noninvasively evaluating the renal structure and
function in vivo in a mouse model of UUO. The
current results indicate that micro-CT is useful for
conducting further experimental research using
small animals.
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